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S U M M A R Y  

The response of an electronic system to the photons emitted by a radioactive source (noise source) is exponential. 
Some statistical properties of the system output current are investigated for Poisson-distributed decay. It is found 
that the power spectral density for the noise is approximately proportional to the reciprocal of the frequency square 
(002). Due to the monotonic, decreasing nature of the noise power spectrum, it is found that the higher the signal fre- 
quency, the larger is the signal-to-noise ratio for such a system. 

I. Introduction 

The concept of shot noise in electronic systems is quite well known and its properties have 
been studied by several authors ([1-3,6]). in this paper a similar concept for the radioactive 
decay response to an electronic system is considered and, under certain assumptions, some of 
the statistical properties of the system output current are investigated. 

We consider a radioactive source (noise source) with the following amplitude function: 

C (1 +~ sin COot), (1) a(0 = 

where C is the peak-to-peak amplitude of the noise, ~ is a constant and co 0 is the frequency. 
We assume that the system response to a photon emitted from the noise source is the following 

exponential function : 

i(t) = 1 o exp ( -  t / T ) ,  (2) 

where 

i(t) = output current of the system caused by the photon t seconds after its arrival, 
I o = constant, 
T = time constant of the decay. 

We further assume that the radioactive decay is subject to Poisson distribution. In the real 
world such an electronic system can be applied to a semiconductor device, for example. In a 
semiconductor device, if the radioactive source has sufficient energy, then ionization takes 
place in the device so that hole-electron pairs will be generated. After the removal of radiation 
it is found, experimentally, that the carrier concentration decays exponentially with a constant 
lifetime T. The lifetime T is composed of the surface recombination time T, and the volume 
recombination time T~. These are well known as generation and recombination process ([5]). 

It is of utmost importance to obtain the maximum signal-to-noise ratio in the electronic 
system. Consequently, to understand the behavior of the noise and to describe it mathematically 
is the essential step for optimizing the performance of the electronic system. It is evident that the 
signal-to-noise ratio can be derived from their respective power density spectra. However the 
power spectral density of the noise at the output of an electronic system may be determined 
from the output auto-correlation function. In this paper we investigate the auto-correlation 
function, the power density spectrum, and the characteristic function of the output current of 
the system. 
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2. System Output Current 

Let 

i(t, tk) = I0 exp [--(t-- tk)lT] (3) 

be the magnitude of the current generated in the system due to a photon, when exposed to a 
unit amplitude, and tk be the time of emission of a photon. Then the system output current 
I (t) at time t is given by 

I(t) = ~, a(t,)i(t, tk), (4) 
k 

where a(t) is given by Eq. (1). 
From Eqs. (1) and (4) it follows that 

I (t) = Z (C Io/2)(1 + c~ sin co o tk) exp [ - ( t -  tk)lT]. (5) 
k 

There are an infinite number of terms in the series (5). From a computational point of view, it 
is easier to consider a corresponding finite sum. We thus concentrate upon a large but finite 
interval ( -  T* < t < T*), and define an event A, such that exactly n photons are emitted in this 
time interval, i.e., 

- T * < t k < T * ,  for k = l , 2  . . . . .  n .  (6) 

We further assume that the emission outside the above interval is negligible. In fact, what we 
are stating is that all tg are independently and uniformly distributed over the interval ( -  T*, T*). 

Now (5) can be written as : 

I(t) = ~, f(t ,  tk) , (7) 
k = l  

where 

f( t ,  t k ) :  (CIo/2) (1 +a sin co o tk) exp [--(t--tk)/T].  (8) 

We now discuss the statistical properties of the output current I(t) given in Eq. (7). In that 
respect, we first compute the (auto) correlation function, which is a rough measure of the 
dependence of values of the output separated by a fixed time interval. 

3. The Correlation Function of I(t): 

The correlation function of I (t) is given by 

t~II(q71, T2)= E[I(zl)I(z2) ] = ~ P(A.)E[I(Zl)I(z2)]A.] 
n=O 

n = 0  r = l  s = l  

We know that the radioactive decay is poisson-distributed. If the mean rate of emission of the 
photons is 2, then 

P(A,) - (22T*)" n! exp ( -22T*) .  (10) 

Now from (9) we note that in the double sum 

~,, E[f(zl, t,)f(z2, t~)lA.] (11) 
r = l  s = l  

the terms for which r and s are different, the random variables f ( z x ,  tr) and f (z  2, t~) are in- 
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dependent. Therefore, 

E [f(~l,  tr)f(z2, ts)lA,] = E [f(~l,  tr)lA,] E [f(r2,  t,)l A,] 

1 
(2T*) z ~ -r* (zl, t~).f(z2, t~)dt~dG, r C s 

= (CIo/4T*) 2 exp [ - (~1  +re)/T] 

x (1 +c~ sin coo t~((1 +c~ sin coo t~) exp [(tr +t3/r  ] dtrdt~, (12) 
�9 -- T* T* 

which equals A, say. 
However, for r =  s we have 

E[f (r  I , t~)f(r 2, t~)] A,] = (�89 T*)(CIo/2) 2 exp [ - ( r l  + z2)/T] 

x (1 +~ sin coo0 2 exp(2z/r)&,  (13) 
- -  T *  

which equals B, say. 
Since in the double sum (11) there are (n 2 -  n) terms of the type A and n terms of the type B, 

so we have from (9), 

4),:(~, %) = ~ P(A~ +nB] . (14) 
n = 0  

Now from (10) and (14) we get 

~0ii(~, %) = ~ (22T*)" exp(_Z2T.)[(nZ_n)A +nB] = (22T*)ZA +(22T*)B.  (15) 
,=o n! 

From (12) it follows that 

A = e x p ( - ( ~  +%)/T) (1 +~ sin cootr)(l +~ sin cooq) 
\4T*/ -o0 -~o 

\4T*/  

\ 4 T *  / )=1 

From (13) it can be seen that 

�9 exp [t r +G)/T] dtrd G 

4T*/ e x p ( - ( v l  +%)/T) ~[ (1 +e  sin COotj)exp(rjT)dr; 
) = 1  , --o0 

sin coo rj-- coo T cos coo rj~ 
1 -FCO 2 T 2 J exp(-( 'c l  +~2)/T) h Texp(zjT) [1 +~ 

j = l  

sin coo ~ j -  coo T cos coo r~7 
1 +COg T 2 J 

f m  (CIo] 2 1 e x p ( - ( z l  +~2)/T) (1 +e  sin coot) 2 exp(2~/T)d~ 
B = \ 2 /  ~ -oo ' 

where m = min (zl, %). The algebraic simplification of this expression gives: 

(-C-C2/~~ 2 T I�89 ( 2sinco~176176176 ) 
B = ~ exp ( - [ ' c l - ' c21 / r )  q-2o~ 4 +co2T2 

co2 T 2 +2 sin 2 coom- COo Tsin 2coom 1 
+e2 4(1 +co2 T 2) - �9 

Substituting A and B from (16) and (17) in (15), we get 

(16) 

(17) 
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~n(zl, z2) = 2T(Cio/2) 2 r~=~ +c~ sin (0~176176 +co 2rc~ 2 (0oz 

+exp (_  ].cl_.c2[/T {�89 +2a ( 2 sin(0om--e~176176176 
a t e #  / 

+a2 (02 T 2 +2 sin 2 (0om-(0 o Tsin 2(0om~] 
4(1 +0) 2 T 2) /J (18) 

4. The Power Density Spectrum of l(t) 

We now find the spectral density of the output current I (t) by taking the Fourier transform of 
the auto-correlation function. The spectral density of I (t) is, 

S,,((0) = ~ e-i~*~,,(z)d~, (19) 
- - 0 0  

eii(T ) = Lim 1 4~li(t, t +z)dt. (20) 
T*~co ~ T* 

From (18) we get, after substituting ~ = t and % =  t +z, 

~ii(t, t +~) = (2TCio/2) 2 1 -~ 1 +(02 r 2 sin (0ot +sin (0o(t +z) 

-(0o T(cos (0o t +cos (0o(t +z)) 

( 2 
+ 1 +o) 2 T2/ {(sin COot-(0 o Tcos(0 0 t)(sin (00(t + , ) - 0 )  0 Tcos (Oo(t +~)} 

( e x p  I/ T) 
+ l 1 +4a (2 sin (0o m -  (0o T cos (00 m)/(4 +(02 T 2) 

22T ( 

+~2 (co2 T 2 +2 sin z (0om-(0oTsin2(0om)}] 
2(1 +o) 2 T 2) 

where m = rain(t, t +z) .  From (20) and (21) it follows that 

~II(T) = O, TCIo/2) 2 +B1 1 +~02T 2 +B2 1 +(002T 

where 

(21) 

B 1 = 

B 2 = 

+ e x p ( - l z l / T I l + B 3 (  4 4~ +(0g~2 T2))}] 
22T ( +(0~T i )  +B4(2(1 (22) 

lIT* [sin (00 T+  sin (00 (t + z ) -  (0o T(cos (0o t + cos (0o (t + z))] dt = 0 ; Lim ~ -r* 
T * ~ o o  

I f T* (sin (0o t -  co o T cos (0o t) (sin (0o (t +z) - (0o T cos (00 (t +z)) dt Lim ~ -r* 
T *  ~ oo 

1 f T* Lira ~ _ T* [(1 +(00 z T 2) cos COoZ --(1 -- (02 T 2) cos (00 (2t +z) 
T* -+ oo 

dt 
-2(0oWsin (0o(2t + i ) ]  ~ = �89 +(02T2)cos (0o'C ; 
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B 3 Lim 1 ( |r* = (2 sin coom-co o Tcos ooom)dt = 0 ; 
T,_.+oo 2W* )_r ,  

! (T, 
B4 = r*Lim+ oo 2T* J_ r ,  (c~ T2 +2 sin e COom- a)o Tsin 2Coo)dr = (1 +c%2T2). 

Now substituting these values of B1, B2, B3 and B4 in (22) we get 

~b.(v) = (2rCIo/2) 2 + 2(1 +o)~Z 2) + 1 + ~ 22T J " (23) 

From (19) and (23) we have 

_ ifoo ~ foo Sn(co) = K~c - ~  exp(-ic~z)dr + 2(1 + 4r e) -~  cos ~OoZ e x p ( -  kor)& 

0~ 2 +2 (o~ zl 
+ ~ j _ o o e x p ( -  Ivl/T) e x p ( -  io)~)d_ , (24) 

where 

K = (2TClo/2) e 

After integration, this expression reduces to 

E 21 Su(e)) = K 2rib(co) + roe (3(co-~Oo) +6(co +COo)) + ~ - ] - 1  +oo2T 
~z 2(1 +09 2 T 2) 

[2 /6 (c~176176 ~ 2 + 2 (  1 2-)] (25) 
= 2(1+ 4r e) ) + + oer ' 

where 3 ( ) is the delta function. 
From (25) it is clear that the power density spectrum s.(co) of the noise output current I (t) is 

approximately inversely.proportional to the frequency ~o 2. For four different values of c( the 
spectral density Sn(co) is plotted as a function of co in Fig. 1. It is interesting to note that the 

2 

15 x 

( e 5  

wo FRE~ 

Figure 1. Power density spectrum for noise. Vertical axis: Sn(co ). 

power density spectrum for the noise is monotonically decreasing. Furthermore, it is evident 
that the power density at any frequency co has the second-order effect of the value of e as 
compared with the first-order effect for the noise amplitude function, 

C (1 +c~ sin co o t). a(t) = =2 
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It is to be noted that the three delta functions in the power density spectrum for fixed c~ are 
due to the constant and the sine term alone. 

If the frequency co o of the noise amplitude function'is zero or the noise amplitude is constant, 
then Eq. (25) takes the following form 

Sn(co ) K [(o~ +2 c5 + = L ) (co) k ~ )  1 +o)2T2]'1 
+2~ 

5. The Characteristic Function of I(t): 

The characteristic function O(u) of the output current I(t) is, 

~(u) = E[exp(iuI(t))] = ~, PA.)E[exp(iuI(t))[A.] 
n = O  

= ~,P(A,)E exp iu~,f(t ,  tk [A 
n=O I k k=O 

= • P(A,){E[exp(iuf(t, tk))lA,, ] }' .  (26) 
n=O 

We have already hypothesized that the random variables tk are independently and uniformly 
distributed over the interval ( -  T*, T*). 

Therefore, 

1 (T* 
exp(iuf (t, tk))dtk E[exp(iuf(t, tk))l A,,] = 2T* /* 

l fT* = [exp (iuf(t, tk))-- 1] dtk = 1 + fl, (27) 

where 

1 f 1 f ~ (iuf(t,z)l"dz 
fl - 2T* [exp(iuf(t,z))-l]dz = ~ k n! / 

r t = l  

- 2T* ,=1-~-.v (f(t, z))"dz. 

Now combining (26) and (27), we have 

~(u) = ~ P(&)(a+fi)" 
n = 0  

Substituting P(A,) from Eq. (10) in this expression, we get 

~b(u) = ~ {22T*(1 +fi)}" e x p ( - 2 2 T * ) =  exp(22flT*). 
n = O  n! 

(28) 

(29) 

From (28) and (29), we have 

n=l ~ f (f(l, 

f :J = exp 2.=1 (iuCI~ {exp(-nt /T)}  (1 +cr sin coO" exp(nz/T)d . 
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Now from this expression the expected output current and other higher moments of I (t) can 
be computed using standard techniques. 

6. Summary and Conclusions 

In this paper we have studied the statistical properties of the output current for an electronic 
system having an exponential response from a radioactive source (noise source). The radio- 
active decay was assumed to be Poisson-distributed. It was found that the power spectral 
density for the noise is inversely proportional to the square of the frequency (0)2). The higher 
the signal frequency, the larger is the signal to noise ratio for this system. 

If, instead of (1), the noise amplitude function a(t) has a different form, then one can obtain 
the power spectral density and the characteristic function by methods similar to those employed 
in this report. If the power spectral density is not a monotonic decreasing function of the 
frequency co, then the maximum signal-to-noise ratio can be obtained by the standard approach 
([4]). 
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